Effect of Structural Heat Conduction on the Propagation of Flames in Microchannels

Timothy Leach, Scott Heatwole, Anand Veraragavan, and Christopher Cadou

Department of Aerospace Engineering University of Maryland – College Park

Work Supported by the Air Force Office of Scientific Research
AFOSR F496200110435
Dr. Mitat Birkan

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Effect of Structural Heat Conduction on the Propagation of Flames in Microchannels				5b. GRANT NUMBER		
1VIICI OCHAINICIS				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Maryland College Park				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 93, International Sy une 2005., The origi			ndamentals H	leld in Istanbul,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 43	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation

- Propulsion systems for Nano and Pico-satellites
 - -0.1 to 10 kg
 - High energy density of chemical propellants is attractive
 - Combustion well established means for energy release
- Behavior of deflagration wave may be different when stabilized in small passages
 - Increased exchange with structure
 - Quenching
 - Increased burning rate
 - Enhanced flame stability
 - Potentially important effects on performance of microrocket motors

Previous Work: Fundamental

Quenching in small passages

- Zeldovich (1941)
- Lewis and Von Elbe (1961)
- Effect of heat loss on RR and flammability limits
 - Spalding (1954)
 - Heat loss decreases burning rate and broadens flammability limits
- Effect of heat recirculation (excess enthalpy burners)
 - Weinberg (1970)
 - Weinberg and Hardesty (1974)
 - Takeno(1979,81)
 - Constant T walls, single-step reaction
 - General observations:
 - Super-adiabatic flame temperatures
 - Elevated burning rates

Previous Work: Micro-Channels

- Burning rate and flammability measurements in conductive tubes
 - Zamaschikov (1997)
 - Combustion below 'quenching limit' possible
- Model of flame propagation in a narrow, conductive, channel
 - Zamaschikov and Minaev (2001)
 - Fast chemistry
 - Conduction broadens flammability limits
 - Hysteresis possible
- Minimum 'practical' volume for an HCCI combustor
 - Aichlmayr (2002)
 - Thermal coupling between gas and structure
 - Full chemistry
 - No conduction within structure
- Effect of velocity, heat loss, and passage width on burning rate in microchannel
 - Matalon and Daou (2002)
 - Constant T walls, single-step overall reaction
 - Heat loss to environment decreases burning rate
- Effect of axial conduction in heat recirculating burner
 - Ronney (2003)
 - *PSR* with full chemistry
- Effect of axial conduction in silicon micro-combustor
 - Current work: Effect of heat transfer within structure (conduction)

Objective

- Investigate physics of fluid structure coupling that occurs in chemically reacting systems operating at micro-scales.
 - Enable development of small, efficient combustors for micro rocket motors
 - How small can *practical* micro-rockets be built?
 - Efficient and stable combustion
 - What level of performance is available?
 - Thrust/weight (power density)
 - Specific impulse (efficiency)

Approach

Modeling and Simulation

- Simple model for effect of thermal coupling on δ_r
 - Modification of Mallard-Le Chatelier approach
- Numerical simulation
 - 1-D geometry, Full chemistry, Conjugate heat transfer, Heat conduction in structure

Experiments

- Develop novel non-intrusive diagnostic technique
- Investigate behavior in parallel plate flow reactor with conductive, temperature-controlled walls

• Include thermal coupling with structure:

• Thermo-electrical analogy:

Flame thickness:

$$\delta_{r} = \sqrt{\beta} \sqrt{\frac{k_{r}}{\rho C_{p}} \frac{T_{f} - T_{i}}{T_{i} - T_{0}} \frac{1}{RR}}$$

$$\delta_{r,fr}$$

with
$$\beta = \frac{1 + \zeta \frac{k_s}{k_r} \left(1 + \frac{4H}{\delta_r} \frac{1}{Nu} \right)}{1 + 4\zeta \frac{k_s}{k_r} \frac{H}{\delta_r} \frac{1}{Nu}}$$

Asymptotic behavior:

- Nu \rightarrow 0 or H \rightarrow ∞: No thermal coupling

$$\delta_r \rightarrow \delta_{r,fr}$$

- Nu → ∞ or H → 0: Perfect thermal coupling

$$\frac{\delta_r}{\delta_{r,fr}} \to \sqrt{1 + \frac{k_s}{k_r} \zeta} > 1$$

Limit-cycle behavior of δ_r in H

Large H: limited by k_r
(thin flame)
Small H: limited by k_s
(thick flame)

• Solving for $\delta_r \Leftrightarrow$ third order polynomial

Questions:

- •Influence of Nu?
- •Influence of k_s?

Numerical Simulation

Structure: Energy

Gas-phase:

- Continuity
- Energy
- Species

Structure: Energy

201 grid points Unevenly spaced mesh

Numerical Simulation

Differences wrt. analytical model:

- Chemistry (9 species and 19 reactions)
- Include species diffusion
- Transient capability, but consider steady-state solution

• Assumptions:

- -1-D
- P=const
- Laminar, incompressible, inviscid
- Nu=const
- No thermal diffusion
- Fourier conduction and Fickian diffusion
- $-\zeta \equiv A_s/A_r = 1$
- Adiabatic and non-adiabatic operation

Numerical Simulation

State

$$\rho = \frac{PW_m}{RT}$$

Mass

$$\frac{d(\rho u)}{dx} = \rho \sum_{k} \left(\frac{W_m}{W_k} \frac{dY_k}{dt} \right) + \frac{\rho}{T} \frac{dT}{dt}$$

Energy (gas)
$$d \left(\sum_{k} (h_k Y_k) \right) = \rho C_P \frac{dT}{dt} = -\rho u \frac{dT}{dx} + \frac{d}{dx} \left(k_r \left(\frac{dT}{dx} \right) \right) - a_{ch} h_T (T - T_S) - \sum_{k} (W_k h_k \dot{\omega}_k)$$
Species (gas)

Species (gas)

$$\rho \frac{dY_k}{dt} = \frac{d}{dx} \left(\rho D_k \frac{dY_k}{dx} \right) - \rho u \frac{dY_k}{dx} + W_k \dot{\omega}_k$$

Energy (structure)

$$\rho_S C_{P,S} \frac{dT_S}{dt} = \frac{d}{dx} \left(k_S \left(\frac{dT_S}{dx} \right) \right) + a_S h_T \left(T - T_S \right) - a_S h_{T,e} \left(T_S - T_e \right)$$

Flame Thickness

Estimate based on temperature change through the flame*

$$\delta_r = \frac{T_f - T_0}{\left(\frac{dT}{dx}\right)_{\text{max}}}$$

^{*} Law, C.K. and Sung, C.J., 'Structure, Aerodynamics, and Geometry of Premixed Flamelets', Progress in Energy and Combustion Science 26 (2000) 459-505

Effect of Nusselt Number

- Increasing Nu causes broadening to occur at larger H
- Consistent with model predictions

Effect of Thermal Conductivity

- Increasing k_s increases broadening effect
- Consistent with model predictions

Effect of Heat Loss

- Heat loss reduces broadening and leads to quenching
- Consistent with model predictions

- Conduction also increases burning rate.
- Including $k_{si}(T)$ is important

Definition of Power Density

$$\dot{w}_{D} = \frac{\rho S_{L} \int_{T_{o}}^{T_{f}} C_{p}(T) dT}{L}$$

Note: In following plots, power density is non-dimensionalized by a 'reference' value corresponding to combustion at the laminar flame speed S_L in a volume of 1 cm³.

Power density increases as reduce H; optimum L

UNIVERSITY OF MARYLAND

Definition of Efficiency

$$\eta = \frac{\dot{m}_{f+a} C_P (T_{out} - T_{in})}{\dot{m}_f Q_R}$$

Config. That maximizes power density does **not** maximize efficiency.

Including heat losses leads to optimum H and L

Increasing pressure increases power density

Silicon Micro-Rocket

Silicon Micro-Rocket I_{sp}

Maximum I_{sp} at large H and large L

- Reflects trend in combustor efficiency

Silicon Micro-Rocket Thrust/Weight

Practical Design Region?

Optimum Configuration(Neglecting Pressure Loss)

- L=0.5 mm
- $\bullet H = 5 \mu m$
- $T=72x10^{-9} N$
- T/W = 943

- Maximum T/W corresponds to maximum power density
- Very high T/W may be possible

Experiments

Provide data to validate model and simulations

- Effect of T_{wall} , $k_{structure}$ on
 - Burning rate
 - Reaction zone thickness

Approach

- Construct parallel plate reactor
 - Conductive, temperature-controlled walls
 - Re-configurable (0.5 mm $\leq H \leq$ 10 mm)
 - Build using conventional mfg. processes (avoid MEMS)
- Develop appropriate diagnostic techniques
 - Measure temperature and species concentration
 - Sub-millimeter spatial resolution
 - Non-intrusive

Parallel Plate Reactor

Parallel Plate Reactor

Parallel Plate Reactor

FTIR Proof of Concept

FTIR Proof-of-Concept

Si wafers FTIR collection optic **Traverse** Mask **Plenum** EXCALIBUR SERIES

Silicon Micro-burner Operation

JNIVERSITY OF MARYLAND

Sample Spectra

Temperature Calculation from CO

1. Identify peaks

Temperature Calculation from CO

2. Fit peaks

$$N_{r} = (2j+1)\frac{e^{-\frac{E_{r}(v,j)}{kT}}}{\sum_{j=0}^{\infty} (2j+1)e^{-\frac{E_{r}(v,j)}{kT}}} \qquad E_{r}(v,j) = hc \Big[B_{v}j(j+1) - D_{v}j^{2}(j+1)^{2}\Big]$$

Axial Temperature Distribution

Present Work

- Improved Optics
 - Better FTIR
 - Higher throughput external beam path
- IR Camera for Plate T
- Improved spectral interpretation

Present Work

Improved burner

- Adjustable H
- Improved traverse
- Improved flow control

Conclusions

- Structural heat conduction has important effects on performance of micro-combustors
 - Increases reaction zone thickness
 - Increases burning rate
 - Leads to optimum power density configurations
 - Rocket motors with T/W > 400 appear possible
- Chemical quenching still important
- Viability of micro-rockets hinges on tradeoff between T/W and I_{sp}.
- Experimental verification ongoing

Future Work

Simulation

- Incorporate radiation boundary condition
- Incorporate surface chemistry
- Investigate different fuels

Experiments

- Measure $\delta_r(H)$ in micro-burner
- Construct parallel plate flow reactor
- Replace external optics with optical fiber system

Acknowledgements

The authors would like to thank
Dr. Mitat Birkan and
the Air Force Office of Scientific Research
(AFOSR F496200110435)